How To Optimize Capacity in the Public Cloud

Per Bauer
Your Presenter

Per Bauer
Director of International Services
1. Cloud Facts
2. Impacts on Capacity Management
3. Common misconceptions
4. Optimizing the migration
5. Forecasting requirements and cost
6. Other considerations
7. Summary and Q&A
Cloud Facts
Hybrid IT

Traditional IT

Private Cloud

Public Cloud

Multi Cloud

On-Prem/Co-Location

Terminology

IaaS

PaaS

SaaS

Hybrid Cloud

PaaS

SaaS
Why Are Organizations Adopting IaaS?

1. Cost Reduction
2. Agility
3. Strategic Focus
4. Assurance
5. Scalability
Exodus to the Public Cloud

Source: Gartner (October 2017)

No-Cloud → Cloud-First → Cloud-Only
What Runs in the Cloud?

Cloud Native applications are software specifically designed to run in the cloud:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro-services</td>
<td>Built on small components talking through APIs</td>
</tr>
<tr>
<td>Scale-out</td>
<td>Architected to provide elasticity (add/retract nodes)</td>
</tr>
<tr>
<td>Stateless</td>
<td>Shared state is maintained and mirrored across the nodes</td>
</tr>
<tr>
<td>Automation</td>
<td>Designed for automation using management frameworks like Kubernetes, Swarm, Mesos, etc.</td>
</tr>
</tbody>
</table>
Impact on Capacity Management
The Changing Role of Capacity Management?

Traditional On-premise IT ⇌ Hosted in the Public Cloud

Optimize the use of your limited data center resources ⇔ Optimize the use of your limited budget

Driving Factors for Capacity Management:

- Business critical services
- Seasonality and peaks in business activity
- Business growth
- Regulatory requirements
- Provisioning lead times
- Cost optimization
- Agility

- Business critical services
- Seasonality and peaks in business activity
- Business growth
- Regulatory requirements
- Provisioning lead times
- Cost optimization
- Agility

Efficiency gains realized over time ⇔ Efficiency improvements has immediate impact
Capacity Management for the Cloud

Optimization
- CapEx to pure OpEx
- No “sunk cost”, optimization pays off immediately
- Deliver the “right” capacity at the lowest possible cost

Predictability
- Capacity is infinite, but not budgets
- Qualified prediction of cost - organic growth and forecasted demand
Proactive to Reactive

- Proactivity used to be the axiom
- Harder with less control over provisioning
- Improve reactive clean-up and right-sizing procedures
Misconceptions about Public Cloud
“Capacity is Cheap”

It can be, but it depends on a number of parameters:

- Type of instance (on-demand, reserved, dedicated, etc.)
- Workload profile
- Sustained activity level
- Data volumes exchanged

75% savings
“Capacity Can Be Added Instantaneously”

- Is the application requiring additional capacity designed to scale out?
- Data center location affinity?
- At what cost? Can it be justified? Has anyone budgeted for it?
“Burst During Peak Demand”

Moving workloads to accommodate changing demands

- Lack of compatibility
- Potential benefit lost having to customize, test, validate, and nurse the solution
- Compelling concept, but few successful real-life examples
“Planning Can Be Delegated to the Provider”

- Demand forecasts and sanity checks requires understanding of the business
- Multiple providers?
- Lack of incentives
“Refactoring Happens Prior to Migration”

Challenges:
- Difficult to mimic the target platform during dev and test
- You will be introducing multiple changes at once

Textbook
1. Refactor the application to “cloud native”
2. Test and verify
3. Deploy in the cloud
4. Operate

Lift-and-shift
1. Lift and shift
2. Operate as-is
3. Gradually refactor, test, and verify
4. Continuous deployment
Optimizing the Migration
Cloud Migration challenges

Application Refactoring

- Cloud Native architecture
- MSA, scale-out, automation etc.

Challenges:
- Multiple changes at once
- Long(er) time before visible results

Lift and Shift

- Identify requirements and migrate “as is”
- Gradually refactor after migration

Challenges:
- Newly migrated workload will cost more than “expected”
Optimizing the target instance

Lift and Shift

Instance types
- t2.micro
- t2.small
- t2.medium
- t2.large
...

Lift, Trim and Shift

Utilization of resources
- Business Activity Cycles
- On-Demand vs Reserved
- Growth Headroom

35%-85% savings

[Diagram showing VM, Lift and Shift, and Lift, Trim and Shift processes with instance types and savings calculation]
Where should I start?

<table>
<thead>
<tr>
<th>Architectural Fit</th>
<th>Monolith ← Service Oriented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Cost of Ownership</td>
<td>Low ← High</td>
</tr>
<tr>
<td>Business Process</td>
<td>Static ← Dynamic</td>
</tr>
<tr>
<td>Demand</td>
<td>Stable ← Variable</td>
</tr>
</tbody>
</table>
Forecasting Capacity Requirements and Cost
Forecasting future Cloud spend
Understanding the dynamics of organic growth

Correlate Business Activity with Provisioning
Build a Demand Calendar

- Focus on the biggest drivers of variance
- Automate repetitive aspects
- Analyze input - Socialize sources
- Regular reviews of KPIs with stakeholders
Record the forecasts for correlation with actual outcome

Analyze growth factors individually
- Faulty statistical models, Inadequate data coverage
- Incorrect assumptions, Reality vs. Aspirations

Adjust future forecasts with probability scores based on time and correlation analysis
Predictable Costs

Usage Profiles
Trends and seasonality patterns

Rates and Charges
Current rates and accumulated charges

Demand Calendar
Forecasts about new initiatives

Rolling, automated prediction of future allocation and cost using trends, seasonal profiles and predictive analytics
Ongoing Management and Optimization

- Identify and address inefficiencies
- Track charges vs. budget
- Forecast future capacity requirements
- Predict cost
Other considerations and recommendations
On-Demand vs Reserved Instances

- Discount Range depends on:
 - Commitment period (1-3 years)
 - Type (None/Partial/All Upfront)
 - Class (Standard/Convertible)

- Affinity – reservations can “float” across any accounts within a consolidated bill. “Capacity Reservations” can not float.
Reserved Instances - Recommendation

- Moderate gains for instances used less than 65% of the time
- “Per Instance” RIs quickly becomes unmanageable – group by application, function etc.
- Lifecycle Management

- R.o.T
 - 1-year term reservations typically break even after 6 months
 - 3-year term reservations typically break even after 9 months
Cost Management Challenges

Lack of overview:
Allocation and consumption scattered across the organization

No incentive to curb cloud spending:
Standard billing insufficient for charge-out

Service valuation:
Lack of fully burdened costs and tracking by business unit
Cost Management Using Tags

- Automate tagging of cloud allocations:
 - Business Unit
 - Service or Application
 - Owner
- Global structure and naming conventions
- Track and report on consumption and cost by “peer” to enable charge out
Becoming Cloud Agnostic

Pros:
- Flexibility, more options
- Avoid lock-in
- Enable a multi-cloud strategy

Cons:
- Restricted to least common denominator
- Cloud Service Broker (CSB) or Cloud Mgmt Platform (CMP) dependency
- Cost vs. benefit?
Summary

Capacity Management in the Cloud:

Optimization
Delivering the “right” capacity at the lowest possible cost throughout the lifecycle
• Right-sized migration
• Continuous analysis
• Tagging and charge out policies

Predictability
Quantification of organic growth and forecasted demand to predict cost
• Modeling of growth factors
• Demand calendar
• Continuous improvement
Thank you for your attention.

Questions?