Flash vs Flash:
What’s in it for me?
Agenda

• Flash: What’s in a name?

• Flash memory:
 • History
 • How does it work? Benefits and drawbacks
 • Uses today

• Flash as a storage medium
 • Comparison to spinning disks
 • Measurements from real data
Flash: What’s in a name?
Memory “Lingo”

• RAM: Random Access Memory
 • Fastest and most common
 • Requires constant power source (= “volatile”)

• ROM: Read-Only Memory
 • Slow and read only (data may not be changed)
 • non-volatile

• EEPROM: Electronically Erasable Programable Read-Only Memory
 • non-volatile*
 • Faster than ROM but slower than RAM

• FLASH is essentially a type of EEPROM
Flash memory: history

• Invented by Fujio Masuoka of Toshiba in 1984
• 1989: first Solid State Drive (SSD) fully emulating HDD
• 1991: Flash revenue at $170 million
• 1992: PC’s begin using flash for BIOS
• 1995: first flash-based digital camera
• 1997: flash-based cell phones, PDA, MP3 player, USB sticks
• 2000: Flash revenue exceeds $10 billion
• 2008: EMC offers “Enterprise Flash Drives” in storage arrays
• 2011: All-flash arrays
• 2017: Flash revenue exceeds $50 billion
NAND vs NOR

• Named after their respective gates
• NOR-based flash
 • byte-addressable (suitable for code execution)
 • Relatively slow erase and write speeds (suitable for static data, e.g. router memory)
 • Low density (smaller memory footprints, e.g. BIOS)

• NAND-based flash
 • block addressable (data only; not code)
 • Significantly faster, higher density and cheaper
 • The bulk of common flash today (USB sticks, SD cards, SSD’s, etc.)
Flash memory: principles

- Flash is a series of electronic memory cells
- Individual pages may be read or written to – BUT page must be empty before writing
- If page contains data (even old, unused data, entire block must be erased

https://www.mikroe.com/blog/this-nand-nor-that-nand
NAND flash flavours

- Flash is a series of electronic memory cells
- Single-Level Cells (SLC) store a single bit per cell
- Multi-level Cells (MLC) store 2 bits per cell
- Triple-level (or three-level, TLC) Cells store 3 bits per cell

https://www.mikroe.com/blog/this-nand-nor-that-nand
Comparison

<table>
<thead>
<tr>
<th></th>
<th>SLC</th>
<th>MLC</th>
<th>TLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits per cell</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>P/E Cycles</td>
<td>100,000</td>
<td>3,000</td>
<td>1,000</td>
</tr>
<tr>
<td>Read Time</td>
<td>25 µs</td>
<td>50 µs</td>
<td>~75 µs</td>
</tr>
<tr>
<td>Program Time</td>
<td>200-300 µs</td>
<td>600-900 µs</td>
<td>~900-1350 µs</td>
</tr>
<tr>
<td>Erase Time</td>
<td>1.5-2 ms</td>
<td>3 ms</td>
<td>4.5 ms</td>
</tr>
</tbody>
</table>

Source: http://www.sanotech.com/show/5337/samsung-ssd-840-258gb-review/2

https://www.mikroe.com/blog/this-nand-nor-that-nand
Program/Erase (P/E) Cycles

• Writing (“programing”) and erasing cells requires a fairly high voltage which stresses the transistors
• Eventually, they wear out
• P/E cycles range from 100 or so for low-duty NOR to 100,000 or more for enterprise NAND
Addressing the P/E Problem

- **Wear leveling**: logical writes (even successive writes to the same logical page/track) will be distributed across the die rather than to the same physical page
- Block erases will be deferred as long as possible (until most/all pages are marked for erasure)
- Controller maintains track tables/pointers

- MLC for enterprise, TLC for consumer/commodity
 - SLC? Originally yes (STEC*). MLC half price (overprovision)

- Capacity: A 500GB SSD will contain more than 500GB of flash

- RAID and RAIM
Don’t throw away tape

• Flash memory is listed as non-volatile (i.e. it does not require a constant power source to retain its data)
• This is not *literally* true
• Left without power (i.e. sitting on a shelf) for several years, the cells may “drain”

FLASH is not for archives
EC12 and z13
“Flash Express”

- Flash Express are SSD drives connected to the PCIe bus
- Like traditional paging volumes, the Auxilliary Storage Manager (ASM) still manages access via SSCH instruction but no physical channels are used
- Primary benefits are reduced latency as external I/O is avoided for paging as well as speed benefits of SSD vs spinning disk

z14
“Virtual Flash Memory (VFM)”

- Not actually flash but rather the same DRAM chips as main memory (faster but volatile)
 - literally the same hardware but less expensive than main memory
 - Still, only an auxiliary data pool; data must be transferred to main memory for execution (not directly addressable)
- Faster access than Flash Express as no SSCH required
- Like Expanded Memory from the past
Aux Storage Use

Auxiliary Storage Utilization
Interval Average

- Running out of auxiliary storage can lead to a very bad day…
Flash as primary storage

• The main plan for Flash was always to replace spinning disks
• NAND Flash memory is packaged, with a controller, inside a traditional form-factor HDD enclosure
• To any computer, the device identifies and responds just like a spinning disk drive – just much faster
Flash Candidates

• Random reads
• High disconnect
• When tuning, cache and buffers haven’t helped
 = cache unfriendly
Disk Activity by Type

- How busy is your Storage Subsystem back-end?

- This is not the same as your traditional SSCH or “IOPS” rate
Response Time Components

PCU RT Components
Including I/O rate, Queuing Intensity
PRODPLEX, HTC, 2107-900, 000000B56

- What is your workload profile?
Random reads are also referred to as “Normal” reads.

- Flash will not help much in high hit-ratio environments.
Response by Disk Type

PCU Rank SSD vs HDD Response Time
(Back-end I/O)

HDD Reads

HDD Writes

SSD Reads and Writes
SSD vs HDD: The Economics

• $/GB has been the traditional metric
 • HDD still cheaper: SSD around 10x price of HDD today (average)

• “I personally will never foresee the day, […] when there is a crossover [between the per-gigabyte cost of NAND and rotating magnetic media].
 • Dave Morton. Seagate SVP Finance, 2015

SSD vs HDD: $/GB

Storage and memory costs through the years

BY THE NUMBERS | Source: John C. McCallum, IDC

<table>
<thead>
<tr>
<th>Year</th>
<th>Disk Drives</th>
<th>DRAM</th>
<th>NAND flash</th>
</tr>
</thead>
<tbody>
<tr>
<td>1965</td>
<td>n/a</td>
<td>$2.648</td>
<td>–</td>
</tr>
<tr>
<td>1966</td>
<td>$4.05M</td>
<td>n/a</td>
<td>–</td>
</tr>
<tr>
<td>1970</td>
<td>$185,000</td>
<td>$734M</td>
<td>–</td>
</tr>
<tr>
<td>1975</td>
<td>$180,000</td>
<td>$180M</td>
<td>–</td>
</tr>
<tr>
<td>1980</td>
<td>$262,000</td>
<td>$6.48M</td>
<td>–</td>
</tr>
<tr>
<td>1985</td>
<td>$40,000</td>
<td>$477,500</td>
<td>–</td>
</tr>
<tr>
<td>1990</td>
<td>$4,400</td>
<td>$78,400</td>
<td>–</td>
</tr>
<tr>
<td>1995</td>
<td>$277</td>
<td>$31,633</td>
<td>–</td>
</tr>
<tr>
<td>2000</td>
<td>$7.70</td>
<td>$1,031</td>
<td>$1,255</td>
</tr>
<tr>
<td>2005</td>
<td>$0.79</td>
<td>$158</td>
<td>$42</td>
</tr>
<tr>
<td>2010</td>
<td>$0.11</td>
<td>$18.87</td>
<td>$1.76</td>
</tr>
<tr>
<td>2015</td>
<td>$0.05</td>
<td>$5.22</td>
<td>$0.38</td>
</tr>
<tr>
<td>2017</td>
<td>$0.02</td>
<td>$4.90</td>
<td>$0.32</td>
</tr>
</tbody>
</table>
SSD vs HDD: Other considerations

• Both HDD and SSD prices continue to drop
• Greater SSD adoption fuels demand which fuels innovation
 • TLC, QLC, 3D NAND
 • Economies of scale – it worked with RAID!

• Don’t discount $ per I/O
• Consider electricity and cooling costs as well
Another perspective: Performance vs space requirement

- Access Density = I/O per second per GB of storage

- Consider a requirement for 10,000 I/O’s per second
 - A 15K RPM disk can handle about 200 I/O’s per second with decent response
 - You will need 50 disks to meet this requirement – **whether you need the space or not**
 - The smallest available 15K HDD’s are 300 GB. 50 * 300 = 15 TB

- Perhaps 5 SSD’s at 3 TB each could also accomplish this

- HDD’s cannot compete as capacities increase
All-Flash Arrays

- Traditional controllers were designed for spinning disks
- Internal structure (primarily device adapters) limit SSD throughput

- Vendor implementations vary but all are addressing the issue
 - Flash Enclosures, Bricks, Flash Packs
 - Purpose-built adapters designed to overcome previous limits
 - Higher cost offset by performance, electricity and cooling benefits

- Look for the new bottleneck!
Thank you!